SM2 9.1: Prove Parallelogram Theorems

<u>Problems:</u> Use the figure below for problems 1–2.

1. Identify the pairs of angles that fit each category.

Linear Pairs	Vertical Angles	Corresponding Angles
Alternate Interior Angles	Alternate Exterior Angles	Same Side Interior
<u>Antennate interior Augres</u>	<u>Anternate Exterior Angles</u>	

2. Given $m \angle 1 = 72^\circ$, find the measure of the remaining angles

$m \angle 2 =$	$m \angle 3 =$	$m \angle 4 =$	<i>m</i> ∠5 =
<i>m</i> ∠6 =	$m \angle 7 =$	$m \angle 8 =$	

Find the value(s) of the variable(s) in each parallelogram.

3.

6.

QRST is a rectangle. Find the value of x and the length of each diagonal. 11. QS = x and RT = 2x - 4

12. QS = 7x - 2 and RT = 4x + 3

13.
$$QS = 5x - 8$$
 and $RT = 2x + 1$

14. If a parallelogram is a rectangle, then its diagonals are congruent. How would you prove this is true? (Explain your reasoning)

15. Given that *ABCD*, *EBHG*, and *FIJG* are parallelograms, prove that $\angle D \cong \angle I$

16. Given that *ABCD* is a parallelogram, prove that $\triangle DPA \cong \triangle BPC$

17. Prove that a point on a perpendicular bisector is equidistant from the endpoints of the segment it bisects given that in $\triangle ACD$, <u>BD</u> is the perpendicular bisector of <u>AC</u> and point *E* is on <u>BD</u>. Write your answer in a proof.

